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Symmetry breaking and coarsening of clusters in a prototypical driven granular gas
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Granular hydrodynamics predicts symmetry-breaking instability in a two-dimensional ensemble of nearly
elastically colliding smooth hard disks driven, at zero gravity, by a rapidly vibrating sidewall. Supercritical and
subcritical symmetry-breaking bifurcations of the stripe state are identified, and the supercritical bifurcation
curve is computed. The cluster dynamics proceed as a coarsening process mediated by the gas phase. Well
above the bifurcation point the final steady state, selected by coarsening, represents a single strongly localized
densely packed ‘‘droplet.’’
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I. INTRODUCTION

Rapid granular flow~RGF! continues to attract a grea
deal of attention from physicists@1#. Among the most fasci-
nating phenomena in RGF is clustering: nucleation a
growth of dense clusters of particles, surrounded by dil
granular gas in ‘‘freely cooling’’@2# and driven@3–7# granu-
lar gases. Clustering phenomena can be viewed as a va
of thermal condensation instability, encountered also in ga
and plasmas that cool by their own radiation@8#. This anal-
ogy brings about the question of universality of structu
formation in ensembles of particles with energy losses
different natures. A related, albeit largely unexplored issu
coarsening. When reviewing different cluster-forming~and
phase-separating! granular systems with a fixed number
particles@2,7,9#, one notices that coarsening is ubiquitous.
many of these systems asingle cluster survives after tran
sients die out. The present work addresses different issue
phase separation and coarsening in driven granular gase
consider a simple model system: an ensemble of inela
hard spheres, confined in a rectangular box and driven b
rapidly vibrating side wall at zero gravity. Though this an
related systems were investigated theoretically@3,4,10,11#
and experimentally@6,12#, it has only recently been recog
nized that they exhibit phase separation properties@13–15#.
These properties will be in the focus of the present work.
shall employ granular hydrodynamics to predict the chara
of symmetry-breaking bifurcations of the stripe state a
show that, depending on the control parameters, both su
critical and subcritical bifurcations can occur. We shall s
that the selection of the final phase-separated state occur
cluster coarsening mediated by the gas phase. Only
densely packed ‘‘droplet’’ survives far above the bifurcati
point. These results give evidence that selection by coar
ing is universal in cluster-forming granular flows with a fixe
number of particles.

II. MODEL

Let N@1 identical hard disks of diameterd and massm
51 slide without friction on a smooth horizontal surface o
rectangular box with dimensionsLx3Ly . The local number
density of grains isn, the granular temperature isT. For a
1063-651X/2002/66~5!/050301~4!/$20.00 66 0503
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submonolayer coveragen is less than the~hexagonal! close-
packing densitync52/(A3d2). Three of the walls are immo
bile, and grain collisions with them are assumed elastic. T
fourth wall ~located at x5Lx) vibrates rapidly, x5Lx
1A cosvt, and supplies energy to the particles. The ene
is lost via inelastic hard-core grain collisions, characteriz
by a constant coefficient of normal restitutionr. In the quasi-
elastic limit 12r 2!1 and for small Knudsen numbers, th
Navier-Stokes granular hydrodynamics is expected to be
sonably accurate, even for large granular densities, as lon
the granulate is fluidized@4#. Therefore, the steady states
the system are describable by the momentum and en
balance equations

p5const, “•~k“T!5I , ~1!

wherep is the pressure,k is the thermal conductivity andI is
the rate of energy losses. To make full use of hydrodynam
we shall work in the parameter regime where the ene
supply from the vibrating wall can be represented as a
drodynamic heat flux. This requiresA! l w , wherel w is the
mean free path of the particles at the vibrating wall. A dou
inequality

Tw
1/2/ l w!v!Tw

1/2/A ~2!

is also assumed~index w refers to the vibrating wall!. The
left inequality guarantees the absence of correlations
tween successive collisions of particles with the vibrati
wall, while the right inequality simplifies the calculation
but is not crucial.~As Tw and l w are determined by the pa
rameters of the problem, criteria~2! should beverified@16#.!
The resulting energy flux is@13,17#

q5k]T/]x5~2/p!1/2A2v2nwTw
1/2. ~3!

To make the hydrodynamic model closed, one needs con
tutive relations~CRs!: p,k and I in terms ofn and T. The
CRs are derivable systematically only in the dilute lim
Reasonably accurate CRs in the whole range of densities
be obtained by employing free volume arguments close
the dense-packing limit, interpolating between the high- a
low-density limits and finding the fitting constants by com
paring the results with particle simulations@4,18#. We shall
©2002 The American Physical Society01-1
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use the CRs suggested by Grossmanet al. @4# because of
their relative simplicity. A special investigation@15# showed
that the stability diagrams do not change much if one u
instead the CRs derived by Jenkins and Richman@19#.

Eqs. ~1! can be rewritten in terms of one variable: th
~scaled! inverse densityz(x,y)5nc /n(x,y) @4,13#. In the
scaled coordinatesr /Lx→r the box dimensions become
3D, where D5Ly /Lx is the box aspect ratio. We obtai
“•@F(z)¹z#5L Q(z). Introducingc5*0

zF(z8)dz8, we re-
write it as

¹2c5LQ̃~c!. ~4!

The boundary conditions are

]c

]x U
x50

5
]c

]y U
y50

5
]c

]yU
y5D

50, ~5!

and ~see Ref.@13#!

]c

]x U
x51

5LH̃@c~1,y!#

E
0

DE
0

1

Q̃~c! dxdy

E
0

D

H̃~c~1,y!!dy

. ~6!

HereQ̃(c)5Q@z(c)# and H̃(c)5H@z(c)#, while F,G,H,
andQ are functions ofz only; they are presented in Ref.@13#.
In the rest of the paper the symbol˜ will be omitted. The
total number of particles is conserved,

1

D E
0

DE
0

1dx dy

z~c!
5

N

LxLync
[ f . ~7!

The steady state problem is fully determined by three sca
parameters:L5(32/3g) (Lx /d)2 (12r 2) ~where g.2.26),
the area fractionf and aspect ratioD.

III. STRIPE STATE

The basic state of the system is the stripe state: a late
symmetric stripe of enhanced density, located at the wax
50 @4#. The stripe state is described by they-independent
solution of Eqs.~4! and ~5!; we shall call it asz5Z(x)
corresponding toc5C(x). Notice that Eq.~6! automatically
holds in one dimension~1D! @13#. An example of the stripe
state is shown in Fig. 2~bottom left!.

IV. SYMMETRY-BREAKING INSTABILITY

The stripe state gives way, by a symmetry-breaking bif
cation, to 2D steady states. The bifurcation point can
found by linearizing Eqs.~4!–~7! aroundc5C(x). In the
framework of time-dependenthydrodynamics, this corre
sponds tomarginal stabilityof the stripe state with respect t
small perturbations along the stripe. We write

c~x,y!5C~x!1wk~x!exp~ iky!1c.c. ~8!
05030
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and, after linearization, arrive at a linear eigenvalue probl
for k5kc( f ),

wk92LQCwk2kc
2wk50, ~9!

wk8~0!50, ~10!

wk8~1!2L
E

0

1

Q̃@C~x!#dx

H̃@C~1!#
HCux51wk~1!50. ~11!

Here and below (•••)C(x)5@F21d(•••)/dz#uz5Z(x) , and
(•••) stands for any function. The eigenvalue problem w
considered in different limits, and for different bounda
conditions at the driving wall, in Refs.@13–15#. For a given
L, one obtains the marginal stability curvek5kc( f ) and
corresponding eigenfunctionswk(x). The modes withk
,kc( f ) are unstable. At large enoughL, the instability oc-
curs for f 1(L), f , f 2(L), where kc( f 1)5kc( f 2)50 @13#.
The driving force of the instability is negative effective la
eral compressibility of the gas@15#. Figure 1 gives an ex-
ample of the marginal stability curve in terms of the min
mum aspect ratioDc( f )5p/kc( f ) at which the instability
occurs.

V. BIFURCATION CURVE

To determine the nature of the bifurcation~sub-critical or
supercritical! and compute the bifurcation curve, one shou
go to the second order of the perturbation theory. We
write

c~x,y!5C~x!1(
n

wn~x!exp~ inky!, ~12!

wherew2n(x)5wn* (x), and assume thatw0;w1
2 , w2;w1

2,
w3;w1

3, etc. Therefore, it is only necessary to take into a
count the termsn50,61, and62, yielding the following
linear equations:

w092LQCw05LQCCuwu2, ~13!

w192LQCw12kc
2w15~k22kc

2!w1L@QCC ~w0w1w2w* !

1 1
2 QCCCwuwu2#, ~14!

FIG. 1. The critical aspect ratioD for the instability and param-
eterB determining the bifurcation curve~20! versus the area frac
tion f for L51.253104. The vertical dash-dot line corresponds
f 50.0378.
1-2
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w292LQCw224kc
2w25

1

2
L QCC w2, ~15!

and the boundary conditions:

w08~0!5w18~0!5w28~0!50, ~16!

w28~1!5LFHC

H
w21

HCC

2H
uwu2GU

x51
E

0

1

Qdx, ~17!

wherew5A Y(x) is a properly normalized solution of Eqs
~9!–~11! ~see below!. A cumbersome but straightforwar
boundary condition forw1 at x51 is not presented here
please see Ref.@20#. As the boundary condition forw0 at x
51 is fulfilled automatically, one more condition is need
which is supplied by Eq.~7!,

E
0

1 w0

Z2F
dx52E

0

1S 1

Z3F2
1

FC

2Z2F2D uw1u2dx. ~18!

The solvability condition for Eqs.~13!–~15! yields the bifur-
cation curve: a relation between the amplitude ofw1 ~we call
it A) and kc

22k2. One way to defineA is the following:
w1(x)5A Y(x)1AuAu2 dw1(x), whereY(x) is the solution
of Eqs. ~9! and ~10! such thatY(0)51. This yieldsA(kc

2

2k2)5CAuAu2, whereC5const. The trivial solutionA50
describes the stripe state, while the nontrivial one,kc

22k2

5CuAu2 describes the bifurcated state.C.0 (,0) corre-
sponds to supercritical~subcritical! bifurcation. The solvabil-
ity condition is a generalization of the standard ‘‘orthogon
ity’’ condition, or the Fredholm alternative@21#. It yields C
explicitly in terms of definite integrals of solutions of th
homogeneous forms of Eqs.~9!, ~13!, and ~15! that can be
found numerically, see Ref.@20# for detail. We present here
the resulting bifurcation curve forYc , the ~normalized! y
coordinate of the center of mass of the granulate,

Yc5

E
0

1

dxE
2D/2

D/2

yz21dy

DE
0

1

dxE
2D/2

D/2

z21dy

, ~19!

where we shifted they coordinatey1D/2→y. Let the aspect
ratio of the systemD be slightly larger thanDc5p/kc( f ) so
that only one mode, withk5p/D, is unstable. The bifurca
tion curve takes the form

uYcu5
2

p2B1/2S D

Dc
21D 1/2

, ~20!

whereB5C f2/(2kc
2f 1

2) and f 152*0
1YZ22F21dx. Equation

~20! assumesB.0: a supercritical bifurcation. Figure
showsB( f ) for L512 500. We found thatB.0 on an inter-
val of f that lieswithin the instability interval (f 1 , f 2). Closer
to the pointsf 1 and f 2 we obtainedB,0 which indicates
subcritical bifurcation. Subcritical bifurcations close to t
05030
-

high-density instability border were previously observed
solving numerically the nonlinear steady state equations~4!–
~6! @13#.

VI. HYDRODYNAMIC SIMULATIONS: BIFURCATION
AND COARSENING

We performed a series of hydrodynamic simulations,
verify the bifurcation theory and to follow the cluster dynam
ics at large aspect ratios. The full time-dependent hydro
namic equations were solved with the same constitutive
lations and boundary conditions as those used in our ste
state analysis. Instead of the shear viscosity in the Nav
Stokes equation we accounted for a small model frict
force 2nv/t, wherev is the hydrodynamic velocity. An ex
tended version of the compressible hydrocodeVULCAN @22#
was employed.

We setL51.253104 and f 50.0378 and variedD. The
initial scaled density included a zero mode corresponding
the fixed f plus small-amplitude random noise. Figure
shows the final states for different aspect ratiosD. ForL and
f used, the marginal stability theory predictsDc.1.28 ~see
Fig. 1!. Indeed, the stripe state observed atD51.2 ~Fig. 2,
bottom left! gives way to a slightly asymmetric state atD
51.3 ~Fig. 2, top left!. Well above the bifurcation point, the
final state represents a densely packed island, or droplet~Fig.
2, right!. This implies that all but one of the multiple 2D
steady state solutions found earlier~chains of islands peri-
odic in they direction! @13# are unstable. The stable stead
state selected by the coarsening dynamics is the one with
maximum possible period. For the boundary conditions e
ployed in this work, the maximum period is twice the later
dimension of the system.

Figure 3 shows the bifurcation curveYc(D) predicted by
Eq. ~20!, and measured in the simulations after transients
out. Excellent agreement is obtained for not too large sup
criticalities. Close to the bifurcation point we observed e
ponential slowdown as expected.

Now we present the simulation results on the cluster
namics and selection. For largerD the dynamics involve two
stages~see Fig. 4!. During the first stage, several cluste
nucleate at the wall opposite to the driving wall. Their num

FIG. 2. ~Color! Steady states found in time-dependent hydrod
namic simulations forL51.253104, f 50.0378 andD51.2 ~bot-
tom left!, 1.3~top left! and 3.0~right!. The left wall of the box is the
driving wall.
1-3
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ber is of the order ofD/Dc , which apparently corresponds t
the maximum linear growth rate of the instability versusk.
At the slower second stage the clusters densify and, as
compete for material, their number decreases, and only
densely packed droplet finally survives. The clusters inte
mostly through the gas phase, similarly to Ostwald ripen
in phase-ordering systems with a conserved order param
controlled by gasdynamics@8,23#. A direct merger of tran-
sient clusters was also observed, for another realizatio
noise in the initial conditions. The resulting single dropl
however, was always the same in simulations with the sa
L, f , andD.

VII. SUMMARY

In summary, we employed hydrodynamics to determ
the character of symmetry-breaking bifurcations that lead
phase separation in a prototypical driven granular gas.
supercritical bifurcation curve was computed. We found t
the selection of the phase-separated steady state is mad

FIG. 3. Bifurcation curveYc(D) predicted by Eq.~20! ~line! and
found in hydrodynamic simulations~squares! for L51.253104 and
f 50.0378.
hy
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a coarsening process similar to Ostwald ripening. It appe
that cluster selection by coarsening is a universal selec
mechanism in cluster-forming granular flows with a fixe
number of particles. We hope that this process will be o
served in experiment with spherical particles rolling on
smooth surface@6,12#.
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FIG. 4. ~Color! Time history of the density field forL51.25
3104, f 50.0378, andD55 at scaled times 650~A!, 2,100 ~B!,
2,850 ~C!, 3,250 ~D!, and 7,000~E!. The left wall is the driving
wall. Notice the change of color code with time.
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