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Symmetry breaking and coarsening of clusters in a prototypical driven granular gas
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Granular hydrodynamics predicts symmetry-breaking instability in a two-dimensional ensemble of nearly
elastically colliding smooth hard disks driven, at zero gravity, by a rapidly vibrating sidewall. Supercritical and
subcritical symmetry-breaking bifurcations of the stripe state are identified, and the supercritical bifurcation
curve is computed. The cluster dynamics proceed as a coarsening process mediated by the gas phase. Well
above the bifurcation point the final steady state, selected by coarsening, represents a single strongly localized
densely packed “droplet.”
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I. INTRODUCTION submonolayer coverageis less than th¢hexagonal close-
packing densityn,= 2/(y/3d?). Three of the walls are immo-

Rapid granular flow(RGPF continues to attract a great bile, and grain collisions with them are assumed elastic. The
deal of attention from physicisfd]. Among the most fasci- fourth wall (located atx=L,) vibrates rapidly, x=L,
nating phenomena in RGF is clustering: nucleation and+ A coswt, and supplies energy to the particles. The energy
growth of dense clusters of particles, surrounded by dilutds lost via inelastic hard-core grain collisions, characterized
granular gas in “freely cooling(2] and driver[3—7] granu- by a constant coefficient of normal restitutionn the quasi-
lar gases. Clustering phenomena can be viewed as a variagfastic limit 1-r?<1 and for small Knudsen numbers, the
of thermal condensation instability, encountered also in gasesavier-Stokes granular hydrodynamics is expected to be rea-
and plasmas that cool by their own radiati@j. This anal-  sonably accurate, even for large granular densities, as long as
ogy brings about the question of universality of structurethe granulate is fluidizef#]. Therefore, the steady states of
formation in ensembles of particles with energy losses othe system are describable by the momentum and energy
different natures. A related, albeit largely unexplored issue ipalance equations
coarsening When reviewing different cluster-formin@gand
phase-separatifiggranular systems with a fixed number of p=const, V-(«VT)=I, 1)
particles[2,7,9], one notices that coarsening is ubiquitous. In ) ) . i
many of these systems single cluster survives after tran- wherep is the pressurey is the thermal conductivity anidis _
sients die out. The present work addresses different issues Bfe rate of energy losses. To make full use of hydrodynamics,
phase separation and coarsening in driven granular gases. W& Shall work in the parameter regime where the energy
consider a simple model system: an ensemble of inelastig!PPly from the vibrating wall can be represented as a hy-
hard spheres, confined in a rectangular box and driven by @rodynamic heat flux. This requirés<l,,, wherel,, is the
rapidly vibrating side wall at zero gravity. Though this and Mméan fr'ee path of the particles at the vibrating wall. A double
related systems were investigated theoreticiByt, 10,13  inequality
and experimentally6,12], it has only recently been recog-
nized that they exhibit phase separation propeftiss-15.
These properties will be in the focus of the present work. Wes aiso assumedndex w refers to the vibrating wall The

shall employ granul_ar hyc_irodyn_amlcs to predlc_t the charactef, inequality guarantees the absence of correlations be-
of symmetry-breaking bifurcations of the stripe state an

how that. d di th ol ‘ both ween successive collisions of particles with the vibrating
show that, depending on the control parameters, both SUP&R - while the right inequality simplifies the calculations,
critical and subcritical bifurcations can occur. We shall se

. , ut is not crucial(As T,, andl,, are determined by the pa-
that the selection of the final phase-separated state occurs VR neters of the problem, criteri@) should beverified[16].)

cluster coarsening mediated by the gas phase. Only ong, . .

. i . e resulting energy flux igl3,1
densely packed “droplet” survives far above the bifurcation g 9y BL3,17
point. These results give evidence that selection by coarsen- q= kdTIox=(2/7)°A%w?n, T2, 3)
ing is universal in cluster-forming granular flows with a fixed

number of particles. To make the hydrodynamic model closed, one needs consti-
tutive relations(CR9: p,x and| in terms ofn and T. The
Il. MODEL CRs are derivable systematically only in the dilute limit.
Reasonably accurate CRs in the whole range of densities can
Let N>1 identical hard disks of diameterand massn be obtained by employing free volume arguments close to
=1 slide without friction on a smooth horizontal surface of athe dense-packing limit, interpolating between the high- and
rectangular box with dimensionis, XL, . The local number low-density limits and finding the fitting constants by com-
density of grains i, the granular temperature ® For a  paring the results with particle simulatioh4,18]. We shall

TV, <o<TYIA )
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use the CRs suggested by Grossnedral. [4] because of 6
their relative simplicity. A special investigatidd5] showed I B i Acds
that the stability diagrams do not change much if one uses of /:\ 14
instead the CRs derived by Jenkins and Richifrizgi. @ [ : 13 »
. : : . ! <
Egs. (1) can be rewritten in terms of one variable: the - i
(scaled inverse densityz(x,y)=n./n(x,y) [4,13]. In the 2 T 12
scaled coordinates/L,—r the box dimensions become 1 [ i 1!
XA, whereA=L /L, is the box aspect ratio. We obtain -40 0 62 0'64 0 0%
V..[F_(Z)Vz]=£Q(z). Introducingy = [§F(z')dZ’, we re- R '
write It as
FIG. 1. The critical aspect ratia for the instability and param-
V2y=L£O(¢). (4) eterB determining the bifurcatio_n curvie0) versus the area frac-
tion f for £=1.25x10*. The vertical dash-dot line corresponds to

The boundary conditions are f=0.0378.

and, after linearization, arrive at a linear eigenvalue problem

Wi 5 for k=ke(f),
Plxzo Mly=o Hly=a oh— LQyer—KZpx=0, 9
and(see Ref[13]) ¢L(0)=0, (10)
A (1
Y - fo jo Q(y) dxdy flc”g[xp(x)]dx
x|, Ay - © (1) L Hylpe(1)=0. (11
=1 fo A(u(Ly)dy #id CRZE

_ _ Here and below {- - )y (X)=[F d(- - )1dz]|,-7x, and
Here Q(¢)=Q[z()] andH(y) =H[z(¢)], while F,G,H,  (...) stands for any function. The eigenvalue problem was
andQ are functions ot only; they are presented in R¢L3].  considered in different limits, and for different boundary
In the rest of the paper the symbolwill be omitted. The conditions at the driving wall, in Ref§13—15. For a given

total number of particles is conserved, L, one obtains the marginal stability cunke=k.(f) and
corresponding eigenfunctiong,(x). The modes withk

1 (A (idxdy N <k.(f) are unstable. At large enougdh the instability oc-

zfo fo U LxLync=f- () curs for f4(L£)<f<f(L), wherek.(f,)=k(f,)=0 [13].

The driving force of the instability is negative effective lat-

The steady state problem is fully determined by three scalefi'@l compressibility of the gal5]. Figure 1 gives an ex-
parametersL=(32/3y) (L, /d)?(1—r?) (where y=2.26), ample of the marginal stability curve in terms of the mini-
the area fractiori and aspect ratid. mum aspect ratid\.(f) = m/k.(f) at which the instability

occurs.
IIl. STRIPE STATE V. BIFURCATION CURVE
The basic state of the system is the stripe state: a laterally
symmetric stripe of enhanced density, located at the wall
=0 [4]. The stripe state is described by ti#é¢ndependent
solution of Egs.(4) and (5); we shall call it asz=2Z(x)

To determine the nature of the bifurcatitub-critical or
supercritical and compute the bifurcation curve, one should
go to the second order of the perturbation theory. We can

corresponding t@y= "V (x). Notice that Eq(6) automatically write

holds in one dimensiollD) [13]. An example of the stripe _

state is shown in Fig. Zoottom lefj. w(x,y)zllf(x)Jr; en(X)explinky), (12
IV. SYMMETRY-BREAKING INSTABILITY where ¢ _,(x)= ¢ (x), and assume thaby~ @2, @~ ¢2,

. . i . @3~ @7, etc. Therefore, it is only necessary to take into ac-
The stripe state gives way, by a symmetry-breaking bifur ount the terms1=0+1, and= 2, yielding the following

cation, to 2D steady states. The bifurcation point can b ear equations:
found by linearizing Eqs(4)—(7) around =¥ (x). In the : quations:

framework of time-dependentiydrodynamics, this corre- _p =7 2 13

sponds tanarginal stabilityof the stripe state with respect to #0~ LQueo=LQuul ¢l 13

small perturbations along the stripe. We write 01— LQyo1—k2p1=(K2—k2) o+ L[ Quy (900 + 020" )
P(x,y) =W (x)+ g (x)expiky)+c.c. ® +3Quuwwelel’], (14)
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1
5= LQu @2~ 4ki2=5L Quy ¢7, (15
and the boundary conditions:

¢0(0)=¢1(0)=¢3(0)=0, (16)

€L 14
LR

o Hw Hyw fl
eo(1)=Ll et 5| ¢l leonX’ 17)

whereo=A Y(x) is a properly normalized solution of Egs.
(9)-(11) (see below. A cumbersome but straightforward
boundary condition forp,; at x=1 is not presented here,
please see Ref20]. As the boundary condition fap, at x
=1 is fulfilled automatically, one more condition is needed
which is supplied by Eq(7),

FIG. 2. (Color) Steady states found in time-dependent hydrody-
namic simulations for’=1.25x 10*, f=0.0378 andA=1.2 (bot-
tom left), 1.3(top left) and 3.0(right). The left wall of the box is the
driving wall.

high-density instability border were previously observed by
J'l ﬂdx—zfl( 1 Fy )|<P1|2dX (18) solving numerically the nonlinear steady state equatidhs
0\ Z3F? '

+ —_—
o Z%F 27°F? (6) [13].
The solvability condition for EqY13)—(15) yields the bifur- VI. HYDRODYNAMIC SIMULATIONS: BIFURCATION
cation curve: a relation between the amplitudeprgfiwe call AND COARSENING
it A) and kg—kz. One way to definéA is the following: ) o )
@1(X)=A Y(x)+A|A|? 8¢,(x), whereY(x) is the solution We performed a series of hydrodynamic simulations, to

of Egs. (9) and (10) such thatY(0)=1. This yieldsA(k2  Verify the bifurcation theory and to follow the cluster dynam-

—k?)=CA|A|?, whereC=const. The trivial solutiomz(g ics at large aspect ratios. The fgll tme—dependent_hydrody—
describes the ,stripe state, while the nontrivial ohi—r k? namic equations were solv_gd with the same co_nstltutlve re-
—C|A[? describes the bifijrcated stat€>0 (<0) cérre- lations and boundary conditions as those used in our steady

sponds to supercriticéasubcritica) bifurcation. The solvabil- state analysis. Instead of the shear viscosity in the Navier-

ity condition is a generalization of the standard “orthogonal-smkes equation we accounted for a small model friction
ity” condition, or the Fredholm alternative2l]. It yields C force ~nv/7, wherev is the hydrodynamic velocity. An ex-

explicitly in terms of definite integrals of solutions of the tended version of the compressible hydrocedecan [22]

homogeneous forms of Eq&), (13), and (15) that can be was employed.

. : We set£=1.25<10* and f=0.0378 and varied\. The
found numerically, see Ref20] for detail. We present here . ... L )
: : : . initial scaled density included a zero mode corresponding to
the resulting bifurcation curve foY¥., the (normalized y

coordinate of the center of mass of the aranulate the fixed f plus small-amplitude random noise. Figure 2
9 ' shows the final states for different aspect ratiog~or £ and

1 A2 f used, the marginal stability theory predidts=1.28 (see

f dxf yz ldy Fig. 1). Indeed, the stripe state observedat 1.2 (Fig. 2,

Y .= 0 TR (19 bottom lefy gives way to a slightly asymmetric state At
¢ 1 A =1.3(Fig. 2, top lefj. Well above the bifurcation point, the

A fo dXLMZZ dy final state represents a densely packed island, or drgfitgt

2, right). This implies that all but one of the multiple 2D

where we shifted thg coordinatey+ A/2—y. Let the aspect Steady state solutions found earli@hains of islands peri-
ratio of the systend\ be slightly larger tham .= 7/k(f) so odic in they direction [13] are unstable. The stable steady
that only one mode, with= /A, is unstable. The bifurca- state selected by the coarsening dynamics is the one with the

tion curve takes the form maximum possible period. For the boundary conditions em-
ployed in this work, the maximum period is twice the lateral
12 dimension of the system.
Y= _(__1> , (20) Figure 3 shows the bifurcation curv&,(A) predicted by
w2BY2\ A¢ Eq. (20), and measured in the simulations after transients die

out. Excellent agreement is obtained for not too large super-
whereB=Cf?%/(2kZf7) andf,=2f5YZ 2F ldx. Equation criticalities. Close to the bifurcation point we observed ex-
(20) assumesB>0: a supercritical bifurcation. Figure 1 ponential slowdown as expected.
showsB(f) for £=12500. We found thaB>0 on an inter- Now we present the simulation results on the cluster dy-
val of f that lieswithin the instability interval {1,f,). Closer  namics and selection. For larg&rthe dynamics involve two
to the pointsf,; and f, we obtainedB<<0 which indicates stages(see Fig. 4. During the first stage, several clusters
subcritical bifurcation. Subcritical bifurcations close to the nucleate at the wall opposite to the driving wall. Their num-

050301-3



RAPID COMMUNICATIONS

LIVNE, MEERSON, AND SASOROV PHYSICAL REVIEW B66, 050301R) (2002

0.5 T T T T T T ;
04
03r
0.2
0.1}
0 1 1 1 1 1 1

01 2 3 4 5 6 7

A

[ELE

l 47
[l
|

FIG. 3. Bifurcation curvey (A) predicted by Eq(20) (line) and
found in hydrodynamic simulationsquaresfor £=1.25x 10* and
f=0.0378.

ber is of the order oA/A., which apparently corresponds to < = u =
the maximum linear growth rate of the instability verdus

At the slower second stage the clusters densify and, as they FIG. 4. (Colon Time history of the density field foC=1.25
compete for material, their number decreases, and only on& 10", f=0.0378, andA=5 at scaled times 650A), 2,100(B),
densely packed droplet finally survives. The clusters interact:8%0 (C): 3,250(D), and 7,000(E). The left wall is the driving
mostly through the gas phase, similarly to Ostwald ripening"a!l- Notice the change of color code with time.

in phase-ordering systems with a conserved order parameter, ) o o

controlled by gasdynamid,23). A direct merger of tran- & coarsening process similar to Qstw_ald ripening. It appears
sient clusters was also observed, for another realization dhat cluster selection by coarsening is a universal selection
noise in the initial conditions. The resulting single droplet,Mechanism in cluster-forming granular flows with a fixed

however, was always the same in simulations with the samBuUmber of particles. We hope that this process will be ob-
£ f. andA. served in experiment with spherical particles rolling on a

smooth surfac¢6,12].

VII. SUMMARY
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